Estimating VOC Emissions From Agricultural Fumigants

David A. Sullivan

Certified Consulting Meteorologist

Sullivan Environmental Consulting, Inc.

Objectives of Emissions Assessments

• Research of alternative mitigation strategies

Input to buffer zone modeling

Computation of percent product loss

Primary Methods

Off-field ambient (back calculation) method

On-field profile method

On-field flux chamber method

Design Criteria for Ambient Method

• 8-20 off-field monitors (minimum of 12 preferred)

• 50-300 m from field for field sizes 1-20 acres

Square fields ideal

• 360 degree coverage needed

Typical Ambient Network

Example 3D Sonic Anemometer - - Standard Height Set to 20 ft Agl

Example Monitoring Site for Ambient Method

Variation on Ambient Method: Forecast Approach (8 core; 12 supplemental)

Relative Comparison of the Forecasted Sites and All Sites CALPUFF 6.0 Emission Rates

September 2005 Field Study Forecasted (12) vs. 20 Sites (early start chemigation 2005)

Example: Example Emission Distribution Based of Ambient Method

Buffer zone management goals: (1) minimize peaks, and (2) shift peaks out of nighttime periods.

Example of Multiple Masts Data to Support Emission Distributions

On-Field Profile Method

Profile height is function of field size

◆ < 1 acre: 0.5', 1.5', and 3'

• 20 acres: 0.5', 2.5', and 6'

- ◆ 100 m + separation allows for up to four sub-plots to be done concurrently for mitigation research
- Sonic anemometers used to capture low wind speed events
- Interpolated profiles used for wind speed and concentration

Pros & Cons of On-Field Flux Methods

<u>Method</u>	<u>Advantages</u>	<u>Disadvantages</u>
Gradient Method	No need to capture full extent of plume	Dependent on turbulence theory weak during stable conditions
Integrated Horizontal Flux Method	More direct method	Dependent on extrapolating conc. & ws

On-Field Flux

(Power Supply, Mast Profile, Meteorological Monitoring)

On-Field Flux (Cont)

(Power Supply, Mast Profile, Meteorological Monitoring)

On-Field Flux Example (bedded, polyethylene tarp)

Fitted Representation of Profiles

Scaling Wind Speed Along Profile

Also can be extrapolated by turbulence scaling theory.

Scaling Concentration Along Profile

(normalized for example)

Note: Slight Kink in Profile < 1 foot

Method Calculation: Ambient Method

- Calculated based on regressing normalized modeling and measured concentrations - - - one time step (e.g. 4-6 hours) at a time
- Normalized modeling based on CALPUFF 6 preferred (especially for low wind speed, nocturnal conditions
- Standard error of fit used to allow Monte Carlo sampling of emissions distribution for each sampling period

Method Calculation: Profile Method

$$Q = \frac{1}{x} \int_{z_o}^{z_p} \left(\overline{u} \overline{C}_{dw} - \overline{u} \overline{C}_{uw} \right) dz$$

Where:

Q (emission flux) = μ g/m²/sec

 C_{dw} = Average downwind concentration ($\mu g/m^3$)

 C_{uw} = Average upwind concentration ($\mu g/m^3$), assumed to be 0

x =fetch across treated field (m)

u = mean wind speed at the top of the layer (Sharon, 2005)

Method Calculation: Profile Method (Cont.)

Regression fitted profiles for ln of concentration by height, and wind speed as a function of the ln of height

The layers were established as follows:

Layer (ft)	Wind Speed Height (ft)	Concentration (ft)
0-1.25	1.25	<u>0.5</u>
1.26 - 2	<u>2</u>	<u>1.5</u>
2.1-4.5	<u>4.5</u>	<u>3</u>
<u>4.6-8</u>	8	<u>6</u>
8.1-12	<u>12</u>	<u>10</u>

Comparison of Results Between Method

Example: Oxnard, 2006 Chloropicrin Drip

Example: Oxnard, 2006 1,3D Drip

Comparison of Flux Methods Field 2 (1,3-D)

Example: Santa Maria, 2006 Chloropicrin Drip

Comparison of Flux Estimates Based on ISCST3 and On-Field Flux (Integrated Horizontal Flux Method) For Field 3 (Chloropicrin)

Normalized Example of On-Field Flux Methods in Comparison to Ambient Method (ISCST3) for Shank Injection Broadcast Application

Greatest differences between ISCST3 and on-field flux generally observed during afternoon convective when model limitations appear to increase "calibration" adjustment of fitting procedure

Example of On-Field Flux Methods in Comparison to Ambient Methods for Drip Irrigation Application

Summary: Ratios of Maximum Flux Based on Integrated Horizontal Flux / ISCST3 Method

Convective periods primary reason for ISCST3 method to be higher $\underline{\text{Average ratio}} = 0.9$

Methods to Optimize On-Field Flux Performance

- Integrated horizontal flux method is simple and avoids nocturnal limitations of turbulence scaling theory
- Matching field sizes and profile heights so full plume is captured within profile
- Sonic anemometers eliminate poor wind speed coverage at most critical times (nocturnal, light winds)
- Regression fitting of the profiles enhances extrapolation to full plume

Recommendation

◆ Transition to on-field profile method - - more efficient use of resources

More accurate absolute loss estimates

 Nearly as accurate in modeling context (but does not have the benefit of "calibration" of model)

◆ Cost for on-field flux is 3-4x less than large-scale ambient approach - - for same \$\$ can increase scope 3-4 x

For Same Resources On-Field Flux Studies Reduce Uncertainty in Spatial and Temporal Variability

Thank You

And thanks to the sponsors of these field programs:

Amvac
California Strawberry Commission
Cerexagri
TKI